AD-A096 755 SOUTH CAROLINA UNIV COLUNBIA F/6 9
DATA STRUCTURE DEFINITION AND ACCESS CONTROL FACILITIES FOR LAN-ETC(U)
FEB 81 B 6 CLAYBROOKs A DISCEPOLO ouszq—ao-c-oozz
UNCLASSIFIED ARO=17157,1-EL

[
B
n

2

MF s

IS
. um

““‘!%L e

I flis e

\l)

LU by b N L
—— . e o a .

“DTC FILE copy

. »/." £ F
il
UNCLASSIFIED —

i)

¢

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEF O COMPE Bt RN

2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Data Structure Definition and Access Contro
Facilities for Languages Designed for the
Development of Reliable Software, ;

s;rvfs OF REPORY.4 FERIOD cmr'p

7 Final Repart® |
28 Oct 79=19 Oct 80+ |
b pemroTTRCORC AEFORY »diaew"

- s

I ~

;

. 7.’AU THOR(s)

5 =
/*'Bmy G. /Claybrook L‘-M._.

”.Ij pig, (] b /i isee
l{éiiﬂoznsonuu~ O AN AND

University of South Carolina
Columbia, SC 29208

s N

“CONYRACT OR GRANT NUMBER(e)

/5 . . .
*:f DAAG29- 8¢ (~0022 (

10 PROGRAM ELEMENT. PROJECT, TASK
-) AREA & WORK UN!T NUMBERS

*

11. CONTROLLING OFFICE NAME AND ADDRESS
U. S. Army Research Nffice
Post Office Box 12211
Research Triangle Park, NC 27709

i1 12. REPQRT.DATE a— _— r
{éy‘ 2 ;;: %J \/[f \jZIzj/

13. NUMBER OF PAGES

D

T4, MONITORING AGENCY NAME & ADDRESSU! df

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

rent from Controlling Oftice) 'S. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

NA

17. DISTRISUTION STATEMENT (of the abetract entered in Block 20, it dilfecent from Report)

-~

-

4

16. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reveree side !{ necessary and identity py 010Ck numbder)

ASSTRACT (Cantinue an reveres side i nececcary amd Identily by dlock number)

he objective of the research reported here was to develop a specification method
for the specification of abstract data types and an access control facility suit-
able for inclusion in high-level programming languages. The research was not
intended to include the design of a complete language but instead involved the
development of programming language features that aid in the development of
languages designed for producing reliable software. A constructive specification

DD , %, I3 ceomonoF 'noveEsIs O

81 3 23 Ut

method was developed for specifying abstract data types. wbstract data types 1A//’

— —— e
CEFIIMMTYY ©CL ACRIFIFATINE AR Tuik BACE /Whan Nata Fatarad

cor e -
T“‘ UNCLASSIFIED .~ o /7
”~

d

A

ada ki

e re—emmem s e

iieaall Y o el

[T R PR L PSR AP !
SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

17157.1-EL

~

20. ABGTRACT CONTINUED
\
7z are specified using the module encapsu
— specification consists of two parts:
semantics of operations specification.

is described in the following pages.

]

By
Di

/
"ﬂva

\Dist

lation mechanism. A constructive
a logical structure specification and a
The constructive specification method

11ability Codes
— \IAVﬂtl and/or
special

o . .
Ul s

[
calid

SECURITY CLASSIFICATION OF THIS PAGE/When Date Fntered)

17157 1-EC

Final Report
U. S. Army Research Office Contract No. DAAG29-80-C-0022
entitled

Data Structure Definition and Access Control
Facilities for Languages Designed for the
Development of Reliable Software

University of South Carolina

October 20, 1979 - October 19, 1980

Billy G. Claybrook

Principal Investigator

e -

1.0 Introduction

Tne concept of abstraction has become an important part of problem
solving ana in particular software development. Through the use of abstract
data types, programs can be written that manipulate objects of a given type
without being concerned with how the primitive operations on the objects are
implemented.

In this paper we describe a constructive (or operational)
specification method for specifying abstract data types. We 1imit our
discussion to the specification of data abstractions and do not treat
procedural apstractions. A constructive method specifies how a type's
operations affect instances of the type. By this definition, the abstract
model ([BERZV79]) approach can be considered a constructive specification
method while the algebraic method ([GUTTJ75], [GOGUJI78]) s
nonconstructive.

Tne work described in tnis paper includes some imporiant changes in
notation to the constructive specification method described by the author in
[CLAYB79] and [CLAYB80]. Tne improvements in notation permit more concise and
more readable specifications to be written. This paper gives a more detailed
description of the method, especially with respect to proofs of implementation
correctness.

Tnis paper is organized as follows. In the next section we present some
preliminary concepts dealing with the algebraic and abstract model
specification methods. In Sedion 3 we describe the constructive
specification method by specifying stack, mapping and symboltable data types.
Then in Sections 4 and 5, we discuss implementing and proving implementation
correctness for abstract data types specified constructively using the
symboltable data type. The symboltable data type example was chosen because
it is a nontrivial example and because the reader can readily compare the

constructive specification given for it in this paper with Guttag's algebraic

Problem Studied

The proposed research was to develop a specification method for the

specification of abstract data types and an access control facility suitable

4 .
- aurt mcomanp

for inclusion in hign-level programming languages. The research was not

intended to include the design of a complete language but instead involved the
development of programming language features that aid in the development of]

languages designed for producing reliable software.

Results of the Research

To meet the objectives of this research, a constructive specification .
method was developed for specifying abstract data types. Abstract data types

are specified using the module encapsulation mechanism. A constructive

. P

specification consists of two parts: a logical structure specification and a

semantics of operations specification. The constructive specification method

is described in the following pages.

© s e mve—— s e o I ‘ . - |

“"*‘_.) o s i bt - you /Bl an

specification (in [GUTTJ78]). In Section 6 we treat a database view as a
data abstraction and realize it as an abstract data type and specify it using
the constructive specification method. This particular example differs from
the other data types specified in this paper because the representation data
is shared by all instances of the database view. In addition, it illustrates
at least one important gifference between the constructive method and the
algebraic method. Finally, in Section 7 we present a rather detailed

comparison of specification methoas.

2.0 Preliminaries

An abstract data type can be viewed as a set of values (or objects)
and a set of operations applicable to the values. The definition of an
abstract data type consists of a specification of tne type and an

implementation of the type. A specification of a type is a

representation-independent description of all properties of the type. This
includes specifying the syntax and semantics of a set of primitive operations
applicable to the type. The implementation of a type involves assigning a
representation for the set of objects defined and then implementing the type's
primitive operations on the representation selected. A stack data type, for
example, is often rejresented by a vector and the stack operations, e.g. push,
pop, etc., are implemented using the vector and its operations. In turn, the
vector type itself has a representation, such as a contiguous block of memory
cells, and a set of operations implemented in terms of this representation.

A substantial amount of work has been done to develop <pecification
methods and languages. These approaches to specification have usually been
classified as algebraic specifications ([ZILLS75], (GUTTJI78], [GOUGJ78]) and
apstract model specifications ([BERZV79], [WULFW76], [HOARA72]). Each
approach has its adventages and disad<antages ([GUTTJ78], [BERZV79]).

Presently, the most popular method for specifying abstract data types is

the algebraic specification method. The reason for this appears to be

. AR S TGRSy - - -

twofold: (1) tnhe algebraic method nas a mathematical basis in algebra and
has been formalized, and (2) the algebraic method has been widely publicized.

When an abstract data type is specified algebraically, it is viewed as
an algebra. One then writes the syntax of the operations and the axioms of
the corresponding algebra., The syntax specification defines the names,
domains and ranges of the type's primitive operations. Writing the axioms is
considered to be the semantic specification. The axioms are written in the
form of equations (or rewrite rules) which relate the primitive operations
of the type to each other. To prove implementation correctness, one must show
that an implementation satisfies all the axioms.

With the abstract model approach, an abstract representation (or

abstract object) is selected for objects of the type being defined. It is
important that the users of a type know what its abstract representation is
since the semantics of the type's operations are specified with respect to the
abstract representation. For example, the abstract representation of a stack
is usually a mathematical sequence. The syntax of a type's operations is
defined just as it is in the algebraic approacn. The difference between these
two methods involves specification of the semantics of operations. The
semantics of a type's operations are specified by specifying how each of the
operations affects the abstract object (some operations such as membership
and retrieval operations do not change the state of the abstract object.)
This essentially means that to specify the semantics of a type's operations we
specify how the operations affect an instance of the type. To prove
implementation correctness, the implementation of each individual operation is
proven correct (with respect to the semantics specified for it). It is
noteworthy to point out here that an abstract object's operations are used
only in specifying the semantics of a type's operations and are not used in
implementing the type.

[t is important that abstract data types be specified using a formal

specification language for at least three reasons:

e

Samact

1) communicating the properties of a type in a precise
and unambiguous manner,

2) proving implementation correctness, and

3) designing abstractions.
Communication of properties in a clear and concise manner is impertant because
this permits a type to be understood by both the user of the type and the
implementer of the type. Proving implementation correctness, though often
nontrivial, should be done when it is an important aspect of software
development for an organization using the resulting software. For instance,
several governmental agencies believe that trusted software, i.e. verified
software, is important for security reasons. Formal specification as an aid
to the design of data abstractions may be the most importanti reason for doing
the specification. From our experience in realizing data abstractions ranging
from simple abstractions such as stacks to more complex abstractions such as
database views, formally specifying an abstraction usually leads to a “better"
and often simpler abstraction. With the exception of a few cases such as the
one just mentioned, ease of demonstrating consistency of specifications and
implementatiors is often of lesser importance than ease of examinining and

manipulating specifications.

3.0 The Constructive Specification Method

As stated above, a complete definition of an abstract data type consists
of a specification of the type and an implementation of the type.
Specification details are visible to a programmer while implementation details
are hidden from programmer use. We will use the module encapsulation
mechanism descripbed in [CLAYBS80O] to define abstract data types.

The constructive specification of an abstract data type consists of two

parts: a Jogical structure specification and an operation specification.

Each of these specifications is discussed in detail below.

T
hicas s,

3.1 The logical structure specification

When a programmer specifies an abstract data type, he usually has some
preconceived notions about the gata abstraction such as what an instance
"looks like" (independent of any concrete representation), relationship(s),
if any, between constituent objects, etc. {an instance of a type consists of
a collection of constituent objects). In the constructive approach, these
notions are communicated to the user and implementer of a type via a logical
structure specification. These notions tend to make understanding a type
easier and hence aid in communicating properties of a type. A logical
structure specification essentially defines an abstract model of the type
being specified. It does this by aefining relationship(s), if any, between
constituent objects, by defining restrictions to the relationship(s), and by
expressing an instance of the type as a tuple of elements. The elements of
such a tuple may be sets of constituent objects and relationship(s).

A logical structure specification does not specify an abstract data
type; however, it is an important part of the specification of a type because
the semantics of operations are specified in terms of how they affect an
instance of the type.

The unhounaed stack data type in Figure 1 illustrates the various parts
of a logical structure specification. The objects section contains the names
of the types of constituent objects. Constituent object types can be defined
within a logical structure specification (see Figures 2 and 3) or they can
be passed as parameter(s) to a defining module (see Figure 1). The

relationships section defines any relationship(s) that may exist between

constituent objects.

module mapping[domaintype: Type, rangetype: Typel;
ogical structure T
objects
type NODc = record NAME: domaintype;
ATTRIB: rangetype

end,
occurrence <M: “collection NODE
operations

syntax
NEWMAP: —a mapping
defmap: mapp1ng x domaintype x rangetype —3» mapping
evmap: mapping x domaintype —a rangetype v {UNDEFINZD]
isdefined: mapping x domaintype -—» boolean

semantics
ID: aomaintype; ATTRLIST: rangetype; m: mapping;
NEWMAP = §;

evmap(m,ID) = if Fx m > x.NAMZ = ID
then x ATT 1B e] e UNDEFINED,

isdefined(m, ID) = if 3 x€m & x.NAME = 1D
then TRUE else FALSE;

defmap(m, 10, ATTRLIST) = m u { x with [NA% = ID,

ATTRIB = ATTRLIST]] ;
end mapping;

Figure 2. Constructive specification of mapping oata type

!
z
[
i_
g
]
:
!
i
!
{
3
i
{
4
!

Al

module stack[elementtype: Typel;

logical structure
object ELEM: elementtype
relationships ONTOPOF: ELEM to ELEM
occurrence {S: collection ELEM, O: ONTOPOFD
1nMvdriant assertions
‘1. ONTOPOF is linear

operations
syntax
NCWSTACK: —=> stack
pusn: stack x elementtype ——» stack
pop: stack ——» stack
top: stack —== elementtiype v {UNDEFINED
replace: stack x elementtype —s stack u {ERROR

semantics
X, ¥, 2: elementtype; s: stack;
NEWSTACK = < g, g >

push(s, x) = s with [S = Sw {x] , 0 = if
S = NEWSTACK then ﬂ else 0 u{(x, top(sb&]

pop(s) = if S = § then NEWSTACK
else s with [S = S - fx} , 0=0- {(x, y>\
¢x, ¥>€0] where x = top(s)

top(s) = if s = NEWSTACK then UNDEFINED else x
wnere x<€ S and { ¢y< S) (v, x» «0)

replace(s, x) = if s = NEWSTACK then £RROR
else s with TS = (S - {y} 7 v{x] ,
0=1(0- <y,2>) ufex, 2>}]
where y = top(s)
end stack;

Figure 1. Constructive specification of unboundea stack type

. T

module symboltable[domaintype: Type, rangetyp.: Type]l;

logical structure
objects
Type NNOOT _ jecorc NAME: gomaintype;
T ATTRIB: rangetype

end,
type BLOCK = record CONTENTS: collection NODEZ; enc;
relationsnips NESTEU: BLOCK to BLOCK T
occurrence < N: collection NODZ,
B: collection BLOCK, ND: NcSTEDD
] invariant assertions
: T. NCSTED 1s Tinear
2. JFb€Bw» <p, 0'> € ND ¥ 5 e B

operations
syntax

INIT: —>» sympoltabie

*currentblock: symboltable ——>» BLOCK

enterblock: symboltable —— symboltudie
Teaveniock: symboltable —w symocitabie
isinpiock: symboltable x comaintype —a Dboclean
retrieve: symboltable x domaintype ——>» rangetype
addid: symboltable x domainiype » rangetype -—

sympoltable

semantics
b, bl, cb: BLOCK; x: NODE; 1D: ~1omaintype;
ATTRLIST: rangetype; S: symboltaole;

INIT = s with [N

, B = {b witn [D.CONTERTS =
ND

i

fnon

currentblock(s) = b where J}Dl < 5 % <ol, o) € ND:

) = s with [BUfb with (CONTENTS = § 7}

enterblock(s S
ND = NDU[b, cb> } | wnere b £ 8;

leaveblock(s) = if ND = ﬁ'then INIT
else S with (N = N - fcb.CONTENTS],
B =B - CD}., ,
ND = NU - {¢en, 1> [Leb, by &N}

isinblock(s, I0)

= 1f J x € CO.CONTENTS 3 x.NAMZ =]D
tnen TRUE e

lse FALSE;

retrieve(s,ID) = if s = INIT then UNDEFINED

else if I x € cb.CONTENTS 3 x.NAME = ID
Then x.ATTRIB
else retrieve(leaveblock(s), 10);

addid(s, 10, ATTRLIST) = s witn (N = Nu {x with
(NAME = 1D, ATTRIB‘;‘ATTRLICTg%
B = B with [cb.CONTENTS = cb.CONTENTS v{x§]];
end symboltable; -

. Figure 3. Constructive specification of symboitable data type

Possibly the most important ingrecient of a logical structure
specification is the invariant assertion. The primary functions of the
invariant assertion are to specify restrictions to relationships and to
specify assertions about the model on which the semantics of operations are
specifiec. Wnen the semantics of operations are specified, care must be taken
to ensure that the cperations do not "violate" or "ignore" any of the
assertions.

The apstract data types specified in this paper do not reflect the true
importance of the invariant assertions. Invariant assertions are particularly
valuable in specifying abstract data types wnere there are several
relationships between constituent objects and there are important restrictions
to these relationships. for example, in specifying database views there are
usually several relationships between entity types. As an example, a
specification of the presidential database descriped in [TAYLR76] required 26
invariant assertions. In this context, a logical structure specification is
analoguous to a database subscnema definition. However, there i1s an important
difference betweeen a logical structure specification and say a CODASYL
subschema definition. The invariant assertions of a logicai structure
specification define the semantics of the relationships between entity types.
A CODASYL subscnema definition can only define the syntax of the relationships
and not tne semantics.

wyckoff ([WYCKMB0]) has suggested the use of diagrams to pictorially
describe data types specified using the constructive approach. These diagrams
can be used to aid in the specification of a data type or by a user and an
implementer to help them understand the type. A diagram can be drawn directly
from a logical structure specification. Diagrams for the stack, mapping and

symboltable data types are shown in Figure 4. As we will see, the diagrams in

Figure 4 aid us in developing and understanding the correspondence function

g e o e oL

given in Figure 6. [n these diagrams a R b, i.e. object & is related to

object b via relation R, is represented as

To take a closer look at logical structure specifications, we examine

the unbounded stack data type and the symboltable data type in Figures 1 and
3, respectively. The stack type is a parameterized type with the type of
elements in a stack instance passed as a parameter. An instance of the stack
type consists of a collection of objects of type elementtype. The
relationship petween the elements of the stack is ONTOPOF; ONTOPOF is linear

([CLAYB79] provides a list of terms, such as linear, is ordered on, etc., that

expedite writing invariant assertions.) The terms used in this paper should

be self explanatory.

e ———— .

!IIII!!!!,-"'."""'""""""“"""""".'."-.-'IllllllIllll!""'"""f""'-"r’
E\ o e A

N3 No Ny

Ni: NODE, ej: elementtype;
ONTOPOF = {<N3, No> , Ny, Ni>

4(a) diagram of stack data type

d3 r3) ! dz r2 , l di r1)

M3 M2 My

Mj: NODE; d,: domaintype; r,: rangetype;

4(p) diagram of mapping data type

id) attrlist] [N31,...,N3n3 NZl""’NZHZ Nll"'°’Nln1\

4

Nij ; bz by
N1J: NODE; by: BLOCK; 1ia: domaintype; attrlist: rangetype;

NZSTED = {zb3, b2y . <o, b1>}
4(c) diagram of symboltable data type

Figure 4. Diagrams of stack, mapping and symholtable data types

Constituent objects of a symbol table consist of instances of BLOCK and
NODE. These object types are aefined within module symboltable; however, the
types of the component elements of NODE are passed as parameters. The

relationships and occurrence sections need no explanation; however, the

invariant assertions section does require some explanation. Assertion 2 states

that there is a block which is assumed to be global to all biocks in a

program. This same assumption is made in Guttag's specification of the

symboltable data type ([GUTTJ78]) but it is not explicitly stated.

3.2 Specification of operations

The operdtions section consists of two parts: o syntax specification ang
a semantics specification. The syntax section defines the names, domains and
ranges of a type's primitive operations. Hidden (or auxiliary) operations,

i.e. operations that are used in specifying other operations but are not

available for programmer use, are ndicated by placing an asterisk ('*'} tq :
the left of their name. Operation currentblock in Figure 3 is an example of &
hidden operation.

In many cases, specifying the semantics of a set of operations wusing tne
constructive approach is straightforward. Witnh respect to the symboltable data
type in Figure 3, tne iﬁll operation cCredtes a symbo! taile and estaplisnes the
outermost scope. Operation enterblock estanlishes a new block nested in the
current piock and leaveblock removes the current intermest nicck. Operation
isinblock tests whether or not an identifier has been declared in the current
block ana retrieve retrieves the attribute J1ist of an 1dentifrer from the blouck
closest to the innermost block. Operation addid is explained by the following
exampie. The sympol table for the program shown in Figure 5 at the point of
compilaticn indicated by the arrow 1S given by

addid{adaid(enterblock(adaid(init, x, real})), x, compivx!, y, complex).

begin
x: real;
begin f
x, y: complex;
end
end

Figure 5. Program segment

4.0 Implementation of Apstract (Jata Types

An mplementation ot an abstract data type using the constructive
specification metnou consists of a representation specitication followed by
an mpiementation of the type's operations with respect to tne
representation, The representatiun specification of an dustract date type
indicdates the concrets object.s) used tou represent the Lype gnd the

correspondence between an dbstractl oblect and 1ts conuretls JLJelllis).

Correspunuence 1s Jdetined as a4 tunclion trom conerete ol U5 tu an 40Stract
object. The correspundgence function 1s @ nomurphism ar: 1 35 1dentical an
functionailty to the aostrartion function ot Hoare (tJis- ' 4. A

correspondence tunction 1S named and 1t 1S5 used n progfe ot implementation
correctness.

A corresponuence function may be reldtiveiy SIMpie @ U s tar tne
symooltable data type ang its representation; or Yt may Le Quite complex, In
general, the more dissimilar the concrete odjlects arl the 1Lotracl vatues the,
represent, the more complex the correspondence function.

The correspundence tunction 10r thne tmpiementslion ot the symbotable
data type in Figure 6 15 SYMT, The concrele oLYeCts In this case are
instances of the stack and mapping data types specified n Figures ¢ and 3,
respectively. SYMT maps these concrete obJects 1nto 3 sympol table. The
occurrence tupie shuwn 1n Figure o represents an uccurrence ot symhoitanle
where N = WM, B = S ana ND = 0. M 1s defined 1n Figqure ¢/ ant 5 any O are '
defined wn Figure 1. This detinition of SYMT an be easily unuerstoud vy
looking at Figure 4. [mplicit 1n the definition of SYMT s trhe tact that o
block 1s equivalent tu an element of a stack ana each element of a stack 15 3
collection of mappings.

Tne 1mplementation section provides an implementation ot an abstract

data type's operations in terms of concrete object(s) ar: councrete object

operations. An implementation of an operation i1s specified using composition

of operations, tests for equality (or inequality) and the if-then-else
construct. An wplementdation of tne symboltable datd type 1s given 1n Figure

6.

representition

symtab: symbolitaple; stk: stack; m: napping;
symtav = SYMT(stk(m}) where SYMT{(stk\m)) = <wuM, S, 0>

implementation
Sin: Sltduw; 1d: agomaintype, attr: rangetype,

INIT = SYMT{pusn{NEWSTACK, NEWMAP))
enterulock {SY™ T ist)) = SYM {pusnistk, NowMAP)

audid{SYMI(stk), 14, attr) =
SiMT(replaceysta, defmapitup Ste,, 1d, attr)))

leaveb lock (SYMT{stk)) = 1t 0 = ﬁ tnen
SYMT (pusnTNC W, TACK, NEWMAP))

else SYMT(pop{stk})

retrieve(SYMT/stk), 10) = 1f stk = push NLWSTACK, NEWMAP)
T then UNUEFIND
else
T3 isdefined(top(stk}), id)
Tthen evmap(top(stk), 1d)
else retrieve(leaveblock(
T SYMT(stx)), id)

151nblock (SYMT(stk), 1a; = isdefined(top(stk)}, id)

currenthiock SYMT(ste ;) = top{stk)

figure 6. A representation and an mplementation of symholtable data type

5.0 Proving [mp emeritation (orrectness

For the constructive specification method, a proof of mplementation
correctness involves showing tnat the wmplementation ot earn individual
operation 1s correct with respect to a correspondence function. That 15, for

the symbolitablie data type we must show the following:

—— ———— e

for each symboltable operation W™ show that

U™ (SYMT) = SYMT(q~ '), where q ' s an

implementation of g~
A pictorial view of SYMT is given in Figure 7 using the implementation of
symboltable operation 22213' This pictorial description suggests that proving
implementation correctness involves showing that the instance resulting from
the left side of each operation implementation (given in Figure 6) 1is the

same as the instance resulting from tne corresponding right sige.

replace(stk,...)————— stk'

SYMT SYMT

addid(symtab,...) ~——p symtan'

Figure 7. Pictorial meaning of addig(SYMT) = SYMT(replace)

Before a proof of implementation ccrrectness can be done for the

symboltable data type, it is necessary to prove an implementation invariant.

In general, an implementation invariant is a property that is true for all
values of a type produced by an implementation of the Lype. An implementation
invariant comes up as one proceeds through a proof of correctness. They make
tnemselves obvious when the rewrite process during a proof can no longer
continue. In general, one may not know all the implementation invariants when
a proof 15 nitiated.

For the symooltabie, the following implementation invariant, posed as a
theorem, must be proven:

for eacnh symboltable = SYMT(stk), stk / NEWSTACK.

To prove the theorem, we must show that the invariant is true for all
symboltable operations that produce symooltable values. Since lﬁll.

enterblock, 2ddid, and leaveblock are the symboltable operations that produce

Proof
right side
SYMT (push(stk, NEWMAP))
- SYMT(stk with [S = Su{hcwMAP} , O = 1f stk = NEWSTAK
then g else OU{(NENMAP, top(stk)> })
[by semantics of push)
- SYMI(stk witn [S = So {NewmMar} , 0 - ov{Cwme,
top(st)> }
(by implementation invariant)
= symtab witn [B = Bu{v witn [CONTENTS - {u;m;«r} },
ND = NDu{{¢b, cd) }]
(oy correspondence function SYMT 1in Figure =,
left side

enterplock (SYMT(stk,;) = enterulock(symtar;
(by definition of SYMT)

= symtab witn (B Y {0 with {CONTENTS - g (.
ND = MOV {¢b, cBDF] where o

{by semantics of enterblock)
L s

The left and rignt sides are equal since NOWMA? - j
Pt Pt f
Figure 9. Proof of implementation correctness for operatron enterbloca
NP At st et st

5.1 Comments on proofs of 1mplementation correctness

Proofs of implementation correctness for types specifieo using the
constructive approacn are relatively straightforward. Fur tne constructive
specification of the symboltable data type the degree of difficulty for a
proof of implementation correctness 15 about the same as for Gutteg's
algepraic specification (see [GUTTJ78]). The proof of implementation
correctness for the sympoltanle implementation given in Figure 6 15 relatively
simple since the representation anag instances of the type are very similar in
nature. When the representation of a type and instances of the type are
dissimilar, in general, the proofs become more difficult. For example, we

specified an orderea linear list (uSing both the algebraic specif:i ation

symooltaule vaiues, 1L suttiaces Lo Snow that given d stacs, stkx, for whicn the
invariant 1s true, each of these operations produces a new stack for which the
invaritantl s stiil true. Thus, we wiil have shown inductively that the

Invar1art 1S true tur a'y valaes of the symboultaple type. Wwyckoff

LW PMOL L gtves o cete proot of the invariant,; we repeat only the proof
v v tr o operation adaid (see Figure 8).
. Ao
iU D M sta o, oaGg. attr o= SYMT{replace(stk, defmap{top stx), id, attr)))

(Ly 'mplementation of operation acdid)
NS

sonee sta f NOaSTACK Dy nypothesis arg letting
g = defmap{top{(stk), 1d, attr]

= UL Lt waln Sy e (S {v v {o} VT 25) U
{(c. 2> }‘ wnere y = top(sfk))
(Dv semantics of replace)
L g W N)

s SYMT gtk 'y wiere stw! / NEWSTACK

Theretore the 1nvariant 1s true 1or operation ddald.
A
Figure 8. Proot of the wmplementation invariant using operation addid.

A (omplete proot ot wmplementation correctness for tne implementation
giver 1n Figure b 1S given py Wyckoff. To 11lustrate our proof procedure, we
repedt only a proot of mmplementaton correctness tor operation enterblock
{seev Figure ¥4). The other proofs are similar. In Figure 4 we show

enterplock (SYMT (St)) = SYMT{push{stk, N:wWwMA™)
by showing that the instances resulting from the left and right sides are

1dentical.

Tne gevelopment of the right side in Figure Y makes use of the semantics
of stack operation push, the implementation invariant defined above, the

function SYMT, and the fact that ¢b = top(stx). The development of the left

side is simpler and makes use of the semantics of operation enterblock and

SYMT,

e

method and the constructive method) and then implemented it using a binary
searcn tree. In our attempts to complete a proof of implementation
correctness for the list, we had to consider several special cases of the
binary searcn tree for boutn specitications. For the alyebraic specification,
considerable ingenuity was required as well as proving some auxiliary theorems
to permit rewriting to continue during proofs (see {CLAYB8Ib]). Like the

proofs for the algebraic specification of the linear iist, the proofs for the L

constructive specification were relatively long; however, tney were

straightforward in comparison.

6.0 A Database View Example

In this section we realize a database view an an abstract data type and
specify it using the constructive specification method. This example is
included because gatabase views are substantially different tnan the other
data abstractions specified in this paper. The difference exists because
databases are normally shared data objects with many ditferent users capable
of updating the database and the updates may affect tne values of a view.

A database view is an abstraction of an underlying database. A view has
the following properties:

1) an underlying database is assumed to exist; otherwise, it is
impossible to derive a view,

2) wviews are not materialized, i.e. they are not stored in a
database, and

3) 1in a shared database environment, some values of a view may]
be created by otner users who are updating the underlying
database.

An underlying database is considered to be the representation of a database

view and an implementation of a database view is an implementation of the

view's operations with respect to the underlying database.

In the example described below, the database view specified 1s a
relational view ([DATEC77]). For simplicity, we assume that the view
consists of a single relation (referred to as a view relation) and the

representation is a single relation (referred to as a base relation) stored |

in the database. The base relation consists of a set of tuples with the
following attributes

(car_no, model, bouy no, yr, current_value, mi, disp, dest, rc, col, loc)

._4_‘..

while an instance of the view relation consists of a set of tuplies with the

following attributes
(car_no, mi, dest, disp, rc)

Each car owned by the car rental company (described below) has a tuple
corresponding to it stored in the database with car_no being a primary key.

The environment for this example is as follows. A car rental company in
a large city nas a central heaaquarters where car purchases are made,
allocations of cars to local rental offices are made, etc. When a new car is
purchased, all information on the car such as license plate number (car no),
body identification number, color, model, etc. are stored in the database by
headquarters database system personnel. When a car is assigned to a local

rental office, the value of the Tocation attribute of the particular car's

tuple is set to the location of the local office to wnich it is assigned and
its disposition (disp) 1is set to ‘avail', meaning that it is available to be
rented, |
The function of a local rental office giffers from that of the
headquarters. A rental office does not neea access to all of the information

in a car tuple. For this reason, a local office's database consists of a set

of the view relation tuples described above. A local office can apply the

operations rent car, return car, maint car, return maint, and avail car to its
i _ _ !)

database represented by its view. Operations rent car and return_car are used

when a car is rented and returned, respectively. Operations maint car and
A

return_maint are used when a car is sent to maintenance and returned from
MMAA A

maintenance, respectively. Operation avail_car is used to obtain a set of
WA ot

available cars having a specified rate class. The rental car database view

describeud here is a simplified version of a view described in [CLAYB8la]. 1In

the description of the view in [CLAYB8la], the view also has rental car

history ana maintenance history view relations.

——

The database view is realized as the abstract data type dbview and
specified using the constructive specification method (see Figure 10). In P
this specification we assume that the data types car_number, mileage, etc. are
available for use in module dbview. Type re_set is defined as a set of car
numbers. Type dbview is a parameterized type, with parameter xloc (the value
of xloc is a local rental office location). A particular instance of dbview
is a set of tuples consisting of only those cars assigned to a particular
local rental office. For this reason the local office location does not have

to be specified as a parameter in each of dbview's operations.

|
!]

module dbview{xloc: location);
Togical structure

objects
type TUPLE = record ca: car_number;
mi: mileage;
dest: destination;
disp: d@isposition;
rc: rate class

end;
occurrence <collection TUPLE >
operations

syntax

rent car: dbview x car_number x destination —»dbyiew U
- {UNDE FINE D}
return car: dbview x car number x mileage —» dbview V
ERROR}

maint _car: doview x car_number —> dbviewu { ERROR}]
return_maint: dbview x car_number —» dbview L{ERROR
avail_car: dbview x rate class —> rc_set

semantics
C: car number; d:
r: rate class; t:
rent car{db, ¢, d)
if 3t €dd >
then db with [t.disp
else UNDEFINED;

destination; m: mileage;
TUPLE; db: dbview;

(t.ca = c and t.disp = ‘avail')
‘rented, t.dest = d]

return car(db, ¢, m) =
if 3t €db > (t.ca = ¢ and t.disp = 'rented')
then do with [t.disp = 'avail', t.mi = m]
else ERROR;

maint car(db, c) =
if 3t€ab (t.ca = c and t.disp = 'avail')
then db with [t.disp = 'maint'] else LRRUR;

return maint(ab, c) =

if 3t <€ddb ¥ (t.ca

af = C ana L.dysp = 'maint')
then db with [t.disp =

Tavail'] else ERROR;
avail _car(do, r) = {t.Ca ' t€aub and t.rc = r and

t.disp = 'avai]'};
end dbview;

Figure 10. Constructive specification of a relational database view

A representation of dbview is given in Figure 11. In this
representation specification, the correspondence function VIEWMAP is defined
as a derivation of view relation tuples from base relation tuples. This is a

natural way to gefine correspondence functions for relational database views

and has been adopted in RIGEL ([ROWEL79]) and in EXT Pascal ([CLAYBS8la]).

P s O PR

representation
db: dbview;
db = VIEWMAP{R) where
VIEWMAP[RY = {(r.Ca, r.mi, r.dest, r.disp, r.rc)\
r¢R and r.loc = xloc}

Figure 11. A representation for view dbview

The function VIEWMAP gefines an instance of dbview as consisting of a set of
tuples having the five attributes: ca, mi, dest, disp, and rc. R is the
representation of instances of dbview and it is the base relation from which
instances of dbview are derived.

An 1mplementation of ubview's operations is omitted here but they woula
be implemented in terms of R's operations, namely appenc, delete and replace.

Nt NS i

The interested reader snhould see {CLAYB8lb] for an implementation of dbview

andg a proof of implementation correctness for some of dbview's operations.

6.1 Comments on tne database view example

The database view example was included in this paper for twe reasons;
(1) to show the utility of the constructive specification method, anc (2)
to serve as an example for comparison with the algebraic specification method
in an environment where sharing of representation data occurs.

In the database view example, values of an instance of dbview may be
created by the headquarters database personnel. For example, a car tuple may
be removed from a view if the location of the car is modified, i.e. the car is
assigned elsewhere or sold, by headquarters personnel, or the headquarters may
decide to alter the rate class of some or all of its cars.

Specifying cata abstractions in whicn representation data is shared
causes no particular problems for the constructive specification; however, it
does cause some problems for the algebraic method. The reason for this is
that with the algebraic method, the behavior of an cobject and the generation

of that object are intertwined. The problem incurred by the algebraic method

is that some of the constructor operations that create values of dbview are

not 1n dbview's operation set but instead are included n tne underiying
database's operation set. With the algebraic specification, all values of an
abstract data type must be producea by soimne sequence of constructors. To
specity dbview aigebraically, we have to include the auidliary (or hidden)
operations emptyview and aud car. Clayorooa YB3t rovides

p empty | ca ¢layvroo~n ([CLAYBSlpJ) provides a

Nt

complete specification of doview using Guttag's algebraic specification

hee g e

method. The specification requires 12 axioms.

7.0 Comparison of Specification Methods i

Below we summarize properties and characteristics of constructive and

algebraic specification methods. Each method appears to have some inherent
problems that are difficult to nandle. [t may seem that we are overly
criticizing the algebraic specification method. However, one of the problems
in comparing these two methods is that the algebraic method has been examined
and researched by more people than the constructive methoc and thus more is
known about its strengths and weaknesses.

In the algebraic approacn, a data type is specified by giving a set of
axioms relating tne type's primitive operations. For the constructive
specification, the logical structure of a type is specifiea, thus defining an
abstract model of the type, and the operatiuns are specified with re-pect to
this model. With the abstract model approach, an abstract object such as a
sequence or set 1s selected and the type's primitive operations are specified
with respect to the abstract object. The constructive specification method k
described in this paper is very similar to the aostract modgel approach;
therefore, any comments made about one applies to the other,

Algebraic specifications are usually considered to be more elegant than
specifications developed using a constructive method. If we do not consider
hidden operations as unnecessary detail then the algebraic method does not B

introduce unnecessary detail. Since it has a mathematical basis in algebra, i

it 1s well suited to formal analysis and has been used as the basis for ‘]

' "semi-automatic" verification systems such as AFFIRM ([MUSSD79]). Another
| feature of tne algebraic specification metnod is that it is compact; however,
as we shall see below, algebraic specifications are not always compact.
Several authors ([FLONL79), [BERZV79], [MAJSM79]) have pointed out

some serious problems with algebraic specifications. These problems are for

the most part inherent in the basic methodology used to cevelop the method

P

and, thus, are difficult to remedy. Fortunately, most of these problems are
not proolems for the constructive methods. Majster ([MAJSM79]) states that
one of the problems with algebraic specifications is the ne-essity to
introduce hidden or auxiliary operations for some specifications. These
operations are not harmful from a theoretical point of view but they do cause
two problems. The number of auxiliary operations can become quite large and
the number of axioms may increase sharply (especially if some of the
auxiliary operations must be constructors). Majster performed a case study
for the description of a file with nine (9) operations and 10 auxiliary
operations and ended up with over 50 axioms. One of the claimed benefits of
algebraic specifications, compactness, was lost in this specification.
Another problem is that tne auxiliary operations have to be implemented.
Another major problem with algebraic specifications involves producing a

well-formea specification, i.e. producing a complete and consistent set of

'i axioms. There does not seem to be any straightforward and intuitive

mathematical procedure for checking completeness and consistency.

i

-% Inconsistencies occur when axioms result in two objects being equivalent when '
in fact tney should nave been different, A complete axiom set is one to which
an independent axiom cannot be added. A more thorough discussion of
completeness and consistency can be found in [GUTTJ80].

Operations in algebraic specifications are all functions. They do not

permit side nffects and they can return only a single type of value. 1In

addition, there are problems with partial operations and error equations

([MAJSM79]). Tne problem with errors occurs because an error is not of the

value type produced by an operation yet it may be the value produced by an
operation. This can lead to contradictions. Goguen ({GUGUJI78]) and Guttay
([GUTTJ77]) have suggested solutions to these problems.

Verifying implementation correctness using a constructive specification
method is conceptually easier than verifying implementation correctness using
algebraic specifications. Flon ([FLONL79]) describes why this is the case.
Algebraic methods deal with values rather than objects. Values are immutable;
that is, an operation can change one value into another but it cannot change
the state of a particular value. This means that operations cannot have side
effects althougn in a typical procedural implementation operations have side
effects. For instance, in an implementation of pop and push, these stack
operations will not result in new stacks but rather will alter existing
stacks. Constructive specification methods do not suffer from this problem
since operations specified constructively deal with changing the state of
objects.

A proof of implementation correctness must be done for eacn operation in
a constructive specification whereas for algebrai¢ specifications we must show
that an implementation satisfies each axiom. For some data types, the number
of axioms may be much larger that the number of operations. From our
experience, there is nothing to suggest showing that an axiom is satisfied by
an implementation is any easier than showing that an implementation of an
operation is correct with respect to a homorphism. This suggests that the
effort required to prove implementation correctness may be substantially
larger for the algebraic approach than for the constructive approach. If one
of the operations is changed then all of the axioms referring to the
corresponding operation will have to be reverified.

In general, we have found that designing abstractions using constructive
methods is much easier than tne algebraic specification method. Minor changes

in the behavior of an operation are easier to describe for constructive

specifications. A modification in tne definition of one constructively

defined operation does not normally affect the other operations. In an
algeoraic specification the meanings of the operations are defined in terms of
the relations between them, so that a change in an operation or change in an
axiom can affect other operations ana axioms. 1t is difficult to produce a
well-formed algebraic specification for a new data abstraction especially if
the exact behavior required is not yet completely designed.

A major complaint against constructive specification methods is that
they are not minimal, 1.e. thay introduce unnecessary detail. Proponents of
the constructive methods argue that only those properties that are necessary
and relevant to specifying semantics are specified. Auxiliary operations
required by the algebraic methoa to specify some data abstractions such as the
dataabase view 1n Figure 10 can be considered to be unnecessary detail,

Another complaint against constructive specifications is that they
suggest implementations and/or constrain the concrete objects. Berzins
([BERZV79]) states that the issues of time and space efficiency often
requires that the representation used in an implementaticn differ
significantly from the model used in the specification of semantics. One
problem innperent in a constructive specification method is that specifying the
semantics of complex operations may be quite lengthy. Constructive
specifications sometimes lack tne succinctness found in algebraic
specifications.

In general, we nave found constructive specifications easier for the
user of a type to interpret. They permit an implementation to be more easily
developed.

From our discussion above, it appears that constructive and algebraic
approaches are ideally suited for some applications and poorly suited for
others. Unfortunately, little attention has been devoted to the problems that
occur when one tries to integrate the kind of examples occurring in the

literature into real software written in real programming languages. The

examples used in published reports have been well known mathematical objects.

Tnese objects are familiar to most, thus it 1s difficult to demonstrate tne

value ot specifying the semanlics ot operalions, especiaily o1 comtuticat 1o

purposes ur in designing data abstractions. Ine datahase view example in this
paper anu in [CLAYBBla], [CLAYBBIb) 15 an attempt to illustrate the importance
of specafications 1n a practical situatron. Wnhat has been missing in the
Jiterature are examples that provide user oriented operations on

non-mathematical objects.

References

BERZV79 Berzins, Valais, A. "Abstract Model Specifications for { a
Abstractions", Pn.D. Thesis, MIT (MIR/LCS/TR-221).

CLAY879 Clayorook, Billy G., et al. "Logical Structure and Data Type
Definition", Proceedings of ACM 79 Conference, October 1979,
pp. 203-211.

CLAYBB0O (laybrook, Billy G. ana Wyckoff, Marvin P. “module: An
Encapsulation Mechanism for Specifying and Implementing
Aostract Data Types", Proceedings of tne ACM Annual Conference,
October 1980, pp. 225-735.

CLAYBBla Claybrook, Biliy G. "Data Apstraction in EXT Pascal", Sperry
Research Center Research Paper SRC-RP-80-73, January 1981.

CLAYB8lb Claybrook, Billy G. et al. "Defining Datavase Views as Data
Abstractions”, Sperry Research Center Research Paper TM 55-3,
February 1981.

OATEC77 Date, C. J. An Introduction to Database Systems, Addison-Wesley,
1977.

GOGUJ78 Goguen, Josepn A., et al. "“An Initial Algebra Approach to the ’
Specification, Correctness, and Implementation of Abstract Data '
Types", Current Trends 1n Programming Methodology, Vol. 4, Data
Structuring, R. Yeh {ed.], Prentice Hall, 1978, pp. 80-149,

GUTTJ75 Guttag, Jonn V. "Tne Specification and Application to Programming
of Abstract Data Types", Ph.D. Thesis, Department of Computer
Science, University of Toronto, Technical Report CSRG-59, 1975,

GUTTJ?77 Guttag, John V., et al. Some Extensions to Algebraic
Specifications", Proceedings of ACM Conference on Language Design
for Reliable Software", STGPLAN Notices, Voi. 17, March 1977,
pp. b3-b/. '

GUTTJ78 Guttag, Jonn V. et al. "Abstract Data Types and Software
Validation", CACM, Vol. 21, December 1978, pp. 1048-1064.

GUTTJ80

HOARAT7?Z

MAJSM79

MUSSD79

ROWEL79

TAYLR76

WULFW76

WYCKMB0

Z1LLS79

Guttag, Jonn V. *“Notes on Type Abstraction (Version 2)",
IEEE Transactions on Software Engineering, Vol. SE-6, January 1980,

pp. 13-Z23.

Hoare, C. A. R. "Proof of Correctness of Data Representations",
Acta Informatica, 1, 4, 1972, pp. 271-281.

Majster, Mila E. “Treatment of Fartial Operations in the ;
Algebraic Specification Technique", Proceedings of Specifications i
of Reliable Software Conference , April 1979, pp. 190-197. .

Musser, David. *“Abstract Data Type Specification in the AFFIRM
System", Proceedings of Specifications of Reliable Software
Conference, April 1979, pp. 47-57.

Rowe, Lawrence A. and Shoens, Kurt A. "Data Abstraction, Views anag
Updates in RIGEL", Proceedings of 1979 ACM SIGMOD Conference, Boston,
May-June, 1979, pp. 71-81.

Taylor, Robert W. and Frank, Randall L. “CODASYL Data-Base
Management Systems", ACM Computing Surveys, Vol. 8, March 1975,
pp. 67-103.

Wulf, William, et al. "“An Introduction to the Construction and
Verification of Alphard Programs", IEEE Transactions on Software
Engineering, SE-2, 2, 4, Decemver 1976, pp. 253-265.

Wyckoff, Marvin P, “A Comparison of a Constructive and a Non-
Constructive Approach to Data Type Specification", Masters Tnesis,
University of South Carolina, June 1980.

Zilles, Stephen N. "“An Introduction to Data Algebras", Lecture
Notes in Computer Science, G. Goos and J. Hartmanis (eds.],
Abstract Software Specifications, Springer-Verlay, New York,

1980, pp. 248-272.

Publications

“module: An Encapsulation Mechanism for Specifying and Implementing Abstract
Data Types", Proceedings of the ACM Annual Conference, October 1980,
pp. 225-235.

"Abstractly Identical Terms of An Abstract Data Type", Sperry Research Center
Report RP-81-9 (submitted to TOPLAS).

“Language Extensions for Specifying Access Control Policies in Programming
Languages", Sperry Research Center Report RP-80-74 (submitted to IEEE
Transactions on Software Engineering).

"A Comparison of Two Specification Methods" (in preparation).

Personnel
Billy G. Claybrook, Principal Investigator (10 months)

Anne-Marie Discepolo, co-investigator (3 months)

James C. Cleaveland, consultant (1 month)

ST VU SN S,

i e s 1

